蜜桃成人无码区免费视频网站,亚洲乱人伦另类激情图区,精品视频在线双飞四区,韩国精品人妻av一区二区三区

您好!歡迎訪問上海仁沃實業(yè)發(fā)展有限公司網(wǎng)站!
全國服務(wù)咨詢熱線:

13817779150

article技術(shù)文章
首頁 > 技術(shù)文章 > 測試儀器基礎(chǔ)應(yīng)用知識總結(jié)(二):故障診斷方法

測試儀器基礎(chǔ)應(yīng)用知識總結(jié)(二):故障診斷方法

更新時間:2018-03-28      點擊次數(shù):2537

一、儀器儀表電路故障診斷方法

  儀器儀表電路維修在電子類的公司里從來都是*的一部分。因為只有通過它才能讓原本不合格的產(chǎn)品zui終出廠。然而,維修也是電子公司中zui為復(fù)雜的一部分。因為它不僅要運用到許多電子專業(yè)知識,有時也需要有豐富的現(xiàn)場經(jīng)驗。下面就我個人多年來總結(jié)的維修經(jīng)驗與感興趣的朋友分享一下。

  1、敲擊手壓法

  經(jīng)常會遇到儀器運行時好時壞的現(xiàn)象,這種現(xiàn)象絕大多數(shù)是由于接觸不良或虛焊造成的。對于這種情況可以采用敲擊與手壓法。

  所謂的“敲擊”就是對可能產(chǎn)生故障的部位,通過小橡皮鎯頭或其他敲擊物輕輕敲打插件板或部件,看看是否會引起出錯停機故障。所謂“手壓”就是在故障出現(xiàn)時,關(guān)上電源后對插的部件和插頭和座重新用手壓牢,再開機試試是否會消除故障。如果發(fā)現(xiàn)敲打一下機殼正常,再敲打又不正常時,先將所有接頭重插牢再試,若傷腦筋不成功,只好另想辦法了。

  2、觀察法

  利用視覺、嗅覺、觸覺。某些時候,損壞了的元件會變色、起泡或出現(xiàn)燒焦的斑點;燒壞的器件會產(chǎn)生一些特殊的氣味短路的芯片會發(fā)燙;用肉眼也能觀察到虛焊或脫焊處。

  3、排除法

  所謂的排除法是通過拔插機內(nèi)一些插件板、器件來判斷故障原因的方法。當拔除某一插件板或器件后儀表恢復(fù)正常,就說明故障發(fā)生在那里。

  4、替換法

  要求有兩臺同型號的儀器或有足夠的備件。將一個好的備品與故障機上的同一元器件進行替換,看故障是否消除。

  5、對比法

  要求有兩臺同型號的儀表,并有一臺是正常運行的。使用這種方法還要具備必要的設(shè)備,例如,萬用表示波器等。按比較的性質(zhì)分有,電壓比較、波形比較、靜態(tài)阻抗比較、輸出結(jié)果比較、電流比較等。

  具體方法是:讓有故障的儀表和正常儀表在相同情況下運行,而后檢測一些點的信號再比較所測的兩組信號,若有不同,則可以斷定故障出在這里。這種方法要求維修人員具有相當?shù)闹R和技能。

  6、升降溫法

  有時,儀表工作較長時間,或在夏季工作環(huán)境溫度較高時就會出現(xiàn)故障,關(guān)機檢查正常,停一段時間再開機又正常,過一會兒又出現(xiàn)故障。這種現(xiàn)象是由于個別IC或元器件性能差,高溫特性參數(shù)達不到指標要求所致。為了找出故障原因,可采用升降溫法。

  所謂降溫,就是在故障出現(xiàn)時,用棉纖將*在可能出故障的部位抹擦,使其降溫,觀察故障是否消除。所謂升溫就是人為地將環(huán)境溫度升高,比如用電烙鐵放近有疑點的部位(注意切不可將溫度升得太高以致?lián)p壞正常器件)試看故障是否出現(xiàn)。

  7、騎肩法

  騎肩法也稱并聯(lián)法。把一塊好的IC芯片安在要檢查的芯片之上,或者把好的元器件(電阻電容、二極管、三極管等)與要檢查的元器件并聯(lián),保持良好接觸,如果故障出自于器件內(nèi)部開路或接觸不良等原因,則采用這種方法可以排除。

  8、電容旁路

  當某一電路產(chǎn)生比較奇怪的現(xiàn)象,例如顯示器混亂時,可以用電容旁路法確定大概出故障的電路部分。將電容跨接在IC的電源和地端;對晶體管電路跨接在基極輸入端或集電極輸出端,觀察對故障現(xiàn)象的影響。如果電容旁路輸入端無效而旁路它的輸出端時故障現(xiàn)象消失,則確定故障就出現(xiàn)在這一級電路中。

  9、狀態(tài)調(diào)整法

  一般來說,在故障未確定前,不要隨便觸動電路中的元器件,特別是可調(diào)整式器件更是如此,例電位器等。但是如果事先采取復(fù)參考措施(例如,在未觸動前先做好位置記號或測出電壓值或電阻值等),必要時還是允許觸動的。也許改變之后有時故障會消除。

  10、隔離法

  故障隔離法不需要相同型號的設(shè)備或備件作比較,而且安全可靠。根據(jù)故障檢測流程圖,分割包圍逐步縮小故障搜索范圍,再配合信號對比、部件交換等方法,一般會很快查到故障之所在。

  二、電子秤傳感器常見問題維護

  目前在國內(nèi)的電子秤傳感器常見問題維護是根據(jù)大多采用電阻應(yīng)變式稱重傳感器原理,其應(yīng)用也越來越普遍電子秤具有稱量快速、顯示直觀、不易磨損等優(yōu)點,已逐漸取代機械秤。電子秤主要有承重傳力系統(tǒng)、稱重傳感器和顯示儀表組成。常用的電阻應(yīng)變式稱重傳感器的工作原理是彈性體在外力的作用下產(chǎn)生彈性變形,使粘貼在它表面的電阻應(yīng)變片也隨同發(fā)生變形,電阻應(yīng)變片變形后,它的阻值發(fā)生變化,由于應(yīng)變片是連接成平衡電橋式的,應(yīng)變片電阻值的變化會引起電橋的不平衡,從面輸出信號,這樣就完成了將外力變換為信號的過程。

  電子秤出現(xiàn)以下幾種現(xiàn)象,需懷疑是稱重傳感器的故障:

 ?。?)電子秤不顯示零,顯示屏不斷閃爍。

  (2)電子秤顯示零以后,在加放砝碼,不顯示稱量數(shù)字。

  (3)電子秤稱量不準確,顯示的稱量數(shù)字與加放的砝碼數(shù)量不一致。

 ?。?)電子秤重復(fù)性不好,加放同一砝碼,有時稱量準確,有時稱量不準確。

 ?。?)電子秤空載或加載時,顯示的數(shù)字不穩(wěn)定,漂移或者跳變。

  這幾種現(xiàn)象都有可能是稱重傳感器的故障。如果能夠準確判斷出故障是在傳感器,這樣就能大大提高工作效率,加快電子秤修理的速度。將需要判斷的傳感器從系統(tǒng)中單獨摘除,分別測量輸入阻抗、輸出阻抗。輸入阻抗正常值為380Ω,輸出阻抗正常值為350Ω,如果測量數(shù)據(jù)不在此范圍內(nèi),該傳感器已經(jīng)損壞。如輸入阻抗、輸出阻抗有斷路,可先檢查傳感器信號電纜有無斷開的地方,當信號電纜完好時,則為傳感器應(yīng)變片被燒毀,通常是因為有大電流進入傳感器造成的。當測量輸入阻抗、輸出阻抗阻值不穩(wěn)定時,可能為信號線絕緣層破裂,絕緣性能下降,或傳感器受潮,使橋路同彈性體絕緣不好。傳感器的零點輸出信號值,一般在(-3mv~2mv)之間。如果遠遠超出此標準范圍,可能是傳感器使用中過載而造成彈性體塑性變形,使傳感器無法使用。如無零點信號或零點輸出信號很小,可能為稱重傳感器內(nèi)的應(yīng)變片已從彈性體上脫落或有支撐物支撐秤體造成。

  三、利用熱電偶和ADC實現(xiàn)高精度溫度測量

  熱電偶廣泛用于各種溫度檢測。熱電偶設(shè)計的進展,以及新標準和算法的出現(xiàn),大大擴展了工作溫度范圍和精度。目前,溫度檢測可以在-270°C至+1750°C寬范圍內(nèi)達到±0.1°C的精度。為充分發(fā)揮新型熱電偶能力,需要高分辨率熱電偶溫度測量系統(tǒng)。能夠分辨極小電壓的低噪聲、24位、Σ-Δ模/數(shù)轉(zhuǎn)換器(ADC)非常適合這項任務(wù)。數(shù)據(jù)采集系統(tǒng)(DAS)采用24位ADC評估(EV)板,熱電偶能夠在很寬的溫度范圍內(nèi)實現(xiàn)溫度測量。熱電偶、鉑電阻溫度檢測器(PRTD)和ADC相結(jié)合,可構(gòu)成高性能溫度測量系統(tǒng)。采用低成本低功耗ADC的DAS系統(tǒng),可理想滿足便攜式檢測的應(yīng)用需求。

  熱電偶入門

  托馬斯•塞貝克在1822年發(fā)現(xiàn)了熱電偶原理。熱電偶是一種簡單的溫度測量裝置,由兩種不同金屬(金屬1和金屬2)組成(圖1)。塞貝克發(fā)現(xiàn)不同的金屬將產(chǎn)生不同的、與溫度梯度有關(guān)的電勢。如果這些金屬焊接在一起構(gòu)成溫度傳感器結(jié)(TJUNC,也稱為溫度結(jié)),另一端未連接的差分結(jié)(TCOLD,作為恒溫參考端)上將呈現(xiàn)出電壓,VOUT,該電壓與焊接結(jié)的溫度成正比。從而使熱電偶輸出隨溫度變化的電壓/電荷,無需任何電壓或電流激勵

  

  圖1. 熱電偶簡化電路

  VOUT溫差(TJUNC - TCOLD)是金屬1及金屬2的金屬類型的函數(shù)。該函數(shù)在美國國家標準與技術(shù)研究院(NIST) ITS-90熱電偶數(shù)據(jù)庫[1]中嚴格定義,覆蓋了絕大多數(shù)實用金屬1和金屬2組合。利用該數(shù)據(jù)庫,可根據(jù)VOUT測量值計算相對溫度TJUNC。然而,由于熱電偶以差分方式測量TJUNC,為了確定溫度結(jié)的實測溫度,就必須知道冷端溫度(單位為°C、°F或K)。所有現(xiàn)代熱電偶系統(tǒng)都利用另一溫度傳感器(PRTD、硅傳感器等)精密測量冷端溫度,并進行數(shù)學(xué)補償。

  圖1所示熱電偶簡化電路的溫度公式為:

  Tabs = TJUNC + TCOLD(式1)

  式中:

  Tabs為溫度結(jié)的溫度;

  TJUNC為溫度結(jié)與基準冷端的相對溫度;

  TCOLD為冷端參考端的溫度。

  熱電偶的類型各種各樣,但是針對具體的工業(yè)或醫(yī)療環(huán)境可以選擇的異金屬對兒。這些金屬和/或合金組合被NIST及電工委員會標準化,簡寫為E、J、T、K、N、B、S、R等。NIST和IEC為常見的熱電偶類型提供了熱電偶參考表[1]。

  NIST和IEC還為每種熱電偶類型開發(fā)了標準數(shù)學(xué)模型。這些冪級數(shù)模型采用*的系數(shù)組合,每種熱電偶類型及不同溫度范圍的系數(shù)都不同[1]。

  表1所示為部分常見熱電偶類型(J、K、E和S)的例子。

  表1. 常見的熱電偶類型 Thermocouple TypePositive ConductorNegative ConductorTemperature Range (°C)Seebeck Coefficient at +20°C

  JChromelConstantan0 to 76051µV/°C

  KChromelAlumel-200 to +137041µV/°C

  EChromelConstantan-100 to +100062µV/°C

  SPlatinum (10% Rhodium)Rhodium0 to 17507µV/°C

  J型熱電偶具有相對較高的塞貝克系數(shù)、高精度和低成本,應(yīng)用廣泛。這些熱電偶使用相對簡單的線性化算法,即可達到±0.1°C的測量精度。

  K型熱電偶覆蓋的溫度范圍寬,在工業(yè)測量領(lǐng)域的應(yīng)用非常廣泛。這些熱電偶具有適中的高塞貝克系數(shù)、低成本及良好的抗氧化性。K型熱電偶的精度高達±0.1°C。

  E型熱電偶的應(yīng)用沒有其它類型熱電偶普及。然而,這組熱電偶的塞貝克系數(shù)zui高。E型熱電偶所需的測量分辨率低于其它類型。E型熱電偶的測量精度可達到±0.5°C,需要的線性化計算方法相對復(fù)雜。

  S型熱電偶由鉑和銠組成,這對組合能夠在非常高的氧化環(huán)境下實現(xiàn)穩(wěn)定、可復(fù)現(xiàn)的測量。S型熱電偶的塞貝克系數(shù)較低,成本相對較高。S型熱電偶的測量精度可達到±1°C,需要的線性化算法相對復(fù)雜。

  應(yīng)用示例

 

  熱電偶電路設(shè)計包括具有差分輸入及能夠分辨微小電壓的高分辨率ADC、穩(wěn)定的低漂移基準,以及準確測量冷端溫度的方法。

  圖2所示為簡化原理圖。MX7705是一款16位、Σ-Δ ADC,內(nèi)置可編程增益放大器(PGA),無需外部精密放大器,能夠分辨來自熱電偶的微伏級電壓。冷端溫度利用MAX6627遠端二極管傳感器以及位于熱電偶連接器處、連接成二極管的晶體管測量。MX7705的輸入共*圍擴展至低于地電勢30mV,可實現(xiàn)有限的負溫度范圍[2]。

  

  圖2. 熱電偶測量電路。MX7705測量熱電偶輸出,MAX6627和外部晶體管測量冷端溫度,MAX6002為MX7705提供2.5V精密電壓基準。

  也有針對具體應(yīng)用設(shè)計的IC,用于熱電偶信號調(diào)理。這些IC集成本地溫度傳感器、精密放大器、ADC和電壓基準。例如,MAX31855為冷端補償熱電偶至數(shù)字轉(zhuǎn)換器,可數(shù)字化K、J、N、T或E型熱電偶信號。MAX31855以14位(0.25°C)分辨率測量熱電偶溫度(圖3)。

  

  圖3. 集成冷端溫度補償?shù)腁DC,轉(zhuǎn)換熱電偶電壓時無需外部補償。

  誤差分析

  冷端補償

  熱電偶為差分傳感器,利用溫度結(jié)和冷端之間的溫差產(chǎn)生輸出電壓。根據(jù)式1,只有精密測得冷端溫度(TREF)時,才能得到溫度結(jié)的溫度(Tabs)。

  可利用新型鉑RTD (PRTD)測量冷端溫度。它在很寬的溫度范圍內(nèi)提供良好的性能,尺寸小、功耗低,成本非常合理。

  圖4所示為精密DAS的簡化原理圖,采用了MAX11200 (24位、Σ-Δ ADC)評估(EV)板,可實現(xiàn)熱電偶溫度測量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)測量冷端溫度。該解決方案能夠以±0.30°C或更高精度測量冷端溫度[3]。

  

  圖4. 熱電偶DAS簡化圖

  如圖4所示,MAX11200的GPIO設(shè)置為控制精密多路復(fù)用器MAX4782,它選擇熱電偶或PRTD R1 - PT1000。該方法可利用單個ADC實現(xiàn)熱電偶或PRTD的動態(tài)測量。提高了系統(tǒng)精度,降低校準要求。

  非線性誤差

  熱電偶為電壓發(fā)生裝置。但是,大多數(shù)常見熱電偶[2,4]的輸出電壓作為溫度的函數(shù)呈現(xiàn)非常高的非線性。

  圖4和圖5中說明,如果沒有經(jīng)過適當補償,常見的工業(yè)K型熱電偶的非線性誤差會超過數(shù)十攝氏度。

  

  圖5. K型熱電偶的輸出電壓和溫度關(guān)系圖。曲線在-50°C至+350°C范圍內(nèi)線性度較好;在低于-50°C和高于+350°C時,相對于線性度存在明顯偏差。[1]

  

  圖6. 相對于直線逼近的偏差,假設(shè)線性輸出為從-50°C至+350°C,平均靈敏度為k = 41µV/°C。[1]

  IEC采用的NIST ITS-90等現(xiàn)代熱電偶標準化處理、查找表和公式數(shù)據(jù)庫[1],是當前系統(tǒng)間互換熱電偶類型的基礎(chǔ)。通過這些標準,熱電偶很容易由相同或不同制造商的其它熱電偶所替代,而且經(jīng)過zui少的系統(tǒng)設(shè)計更新或校準即可確保性能指標。

  NIST ITS-90熱電偶數(shù)據(jù)庫提供了詳細的查找表。通過使用標準化多項式系數(shù)[1],還可利用多項式在非常寬的溫度范圍內(nèi)將熱電偶電壓換算成溫度(°C)。

  根據(jù)NIST ITS-90熱電偶數(shù)據(jù)庫,多項式系數(shù)為:

  T = d0 + d1E + d2E² + 。.. dNEN(式2)

  式中:

  T為溫度,單位為°C;

  E為VOUT,熱電偶輸出,單位為mV;

  dN為多項式系數(shù),每一熱電偶的系數(shù)是*的;

  N = 多項式的zui大階數(shù)。

  表2所示為一個K型熱電偶的NIST (NBS)多項式系數(shù)。

  表2. K型熱電偶系數(shù) Type-K Thermocouple Coefficients

  Temperature Range (°C)-200 to 00 to 500500 to 1372

  Voltage Range (mV)-5.891 to 00 to 20.64420.644 to 54.886

  Coefficients

  d00.0000000E+000.0000000E+00-1.3180580E+02

  d12.5173462E+012.5083550E+014.8302220E+01

  d2-1.1662878E+007.8601060E+02-1.6460310E+00

  d3-1.0833638E+00-2.5031310E-015.4647310E-02

  d4-8.9773540E-018.3152700E-02-9.6507150E-04

  d5-3.7342377E-01-1.2280340E-028.8021930E-06

  d6-8.6632643E-029.8040360E-04-3.1108100E-08

  d7-1.0450598E-024.4130300E-05—

  d8-5.1920577E-041.0577340E-06—

  d9—-1.0527550E-08—

  Error Range (°C)-0.02 to 0.04-0.05 to 0.04-0.05 to 0.06

  利用表2中的多項式系數(shù),能夠在-200°C至+1372°C溫度范圍內(nèi)以優(yōu)于±0.1°C的精度計算溫度T。大多數(shù)常見熱電偶都有不同系數(shù)表可用[1]。

  同樣,在-200°C至0、0至+500°C和+500°C至+1372°C溫度范圍也可以找到類似的NIST ITS-90系統(tǒng),能夠以更高精度(低于±0.1°C,相對于±0.7°C)計算溫度。與原來的“單”間隔表進行比較即可看出這點[2]。
 

  ADC規(guī)格參數(shù)/分析

  表3所示為MAX11200的基本性能指標,具有圖4中所示的電路特性。

  表3. MAX11200的主要技術(shù)指標 MAX11200Comments

  Sample Rate (sps)10 to 120The MAX11200‘s variable oversampling rate can be optimized for low noise and for -150dB line-noise rejection at 50Hz or 60Hz.

  Channels1GPIOs allow external multiplexer control for multichannelmeasurements.

  INL (ppm, max)±10Provides very good measurement linearity.

  Offset Error (µV)±1Provides almost zero offset measurements.

  Noise-Free Resolution (Bits)19.0 at 120sps; 19.5 at 60sps; 21.0 at 10spsVery high dynamic range with low power.

  VDD (V)AVDD (2.7 to 3.6)

  DVDD (1.7 to 3.6)AVDD and DVDD ranges cover the industry’s popular power-supply ranges.

  ICC (µA, max)300Highest resolution per unit power in the industry; ideal for portable applications.

  GPIOsYesAllows external device control, including local multiplexer control.

  Input Range0 to VREF, ±VREFWide input ranges

  Package16-QSOP,

  10-µMAX® (15mm²)Some models like the MAX11202 are offered in a 10-µMAX package—a very small size for space-constrained designs.

  本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,適合于需要寬動態(tài)范圍、高分辨率的低功耗應(yīng)用。利用該ADC,基于式3和4可計算圖3電路的溫度分辨率。

  (式3)

  (式4)

  式中:

  Rtlsb為熱電偶在1 LSB時的分辨率;

  Rtnfr為熱電偶無噪聲分辨率(NFR);

  VREF為基準電壓;

  Tcmax為測量范圍內(nèi)的熱電偶zui大溫度;

  Tcmin為測量范圍內(nèi)的熱電偶zui小溫度;

  Vtmax為測量范圍的熱電偶zui大電壓;

  Tcmax為測量范圍內(nèi)的熱電偶zui小電壓;

  FS為ADC滿幅編碼,對于雙極性配置的MAX11200為(223-1);

  NFR為ADC無噪聲分辨率,對于雙極性配置的MAX11200為(220-1),10Sa/s時。

  表4所列為利用式3和4計算表1中K型熱電偶的測量分辨率。

  表4. K型熱電偶在不同溫度范圍內(nèi)的測量分辨率 Temperature Range (°C)-200 to 00 to 500500 to 1372

  Voltage Range (mV)-5.89120.64434.242

  Rtlsb Resolution (°C/LSB)0.01210.00870.0091

  Rtnfr Resolution (°C/NFR)0.09710.06930.0729

  表4中提供了每個溫度范圍內(nèi)的°C/LSB誤差和°C/NFR誤差計算值。無噪聲分辨率(NFR)表示ADC能夠可靠區(qū)分的zui小溫度值。對于整個溫度范圍,NFR值低于0.1°C,對于工業(yè)和醫(yī)療應(yīng)用中的大多數(shù)熱電偶遠遠足夠。

  熱電偶與MAX11200評估板的連接

  MAX11200EVKIT提供了全功能、高分辨率DAS。評估板可幫助設(shè)計工程師快速完成項目開發(fā),例如驗證圖4所示解決方案。

  在圖4所示原理圖中,常見的K型OMEGA熱電偶(KTSS-116 [5])連接至差分評估板輸入A1。利用Maxim應(yīng)用筆記4875中介紹的高性價比比例方案,測量冷端溫度的[3]。R1 (PT1000)輸出連接至評估板輸入A0。MAX11200的GPIO控制精密多路復(fù)用器MAX4782,復(fù)用器動態(tài)選擇將熱電偶或PRTD R1輸出連接至MAX11200的輸入。

  K型熱電偶(圖3、4)在-50°C至+350°C范圍內(nèi)的線性度適當。對于有些不太嚴格的應(yīng)用,線性逼近公式(式5)能大大降低計算量和復(fù)雜度。

  近似溫度可計算為:

  (式5)

  式中:

  E為實測熱電偶輸出,單位為mV;

  Tabs為K型熱電偶的溫度,單位為°C;

  Tcj為PT1000實測的熱電偶冷端溫度,單位為°C [3];

  Ecj為利用Tcj計算得到的冷端熱電偶等效輸出,單位為mV。

  所以:

  k = 0.041mV/°C——從-50°C至+350°C范圍內(nèi)的平均靈敏度

  然而,為了在更寬的溫度范圍(-270°C至+1372°C)內(nèi)精密測量,強烈建議采用多項式(式2)和系數(shù)(根據(jù)NIST ITS-90):

  Tabs = ƒ(E + Ecj)(式6)

  式中:

  Tabs為K型熱電偶的溫度,單位為°C;

  E為實測熱電偶輸出,單位為mV;

  Ecj為利用Tcj計算得到的冷端熱電偶等效輸出,單位為mV;

  f為式2中的多項式函數(shù);

  TCOLD為PT1000實測的熱電偶的冷端溫度,單位為°C。

  圖7所示為圖4的開發(fā)系統(tǒng)。該系統(tǒng)包括經(jīng)認證的精密校準器,F(xiàn)luke®-724,作為溫度模擬器代替K型OMEGA熱電偶。

  

  詳細圖片(PDF, 3.1MB)

  圖7. 圖4開發(fā)系統(tǒng)

  Fluke-724校準器提供與K型熱電偶在-200°C至+1300°C范圍內(nèi)輸出相對應(yīng)的精密電壓,送至基于PT1000的冷端補償模塊?;贛AX11200的DAS動態(tài)選擇熱電偶或PRTD測量值,并通過USB端口將數(shù)據(jù)送至筆記本計算機。專門開發(fā)的DAS軟件采集并處理熱電偶和PT1000輸出產(chǎn)生的數(shù)據(jù)。

  表5列出了-200°C至+1300°C溫度范圍內(nèi)的測量和計算值,采用式5和6。

  表5. -200°C至+1300°C范圍的測量計算 Temperature (Fluke-724) (°C)PT1000 Code Measured at “Cold Junction” (LSB)Thermocouple Code Adjusted to 0°C by PT1000 Measurements (LSB)Temperature Calculated by Equation 6 and Table 2 (°C)Temperature Error vs. Calibrator (°C)Temperature Calculated by “Linear” Equation 5 (°C)

  -200326576-16463-199.720.28-143.60

  -100326604-9930-99.920.08-86.62

  -50326570-5274-50.28-0.28-46.01

  032655360.000.000.05

  20326590225720.190.1919.68

  10032658311460100.020.0299.96

  20032648622779200.180.18198.69

  50032641457747500.160.16503.70

  10003265201154381000.180.181006.92

  13003265441465621300.090.091278.40

  如表5所示,利用式6,基于MAX11200的DAS系統(tǒng)在非常寬的溫度范圍內(nèi)可達到±0.3°C數(shù)量級的精度。式5中的線性逼近法在很窄的-50°C至+350°C范圍內(nèi)僅能實現(xiàn)1°C至4°C的精度。

  注意,式6需要相對復(fù)雜的線性化計算算法。

  大約十年之前,在DAS系統(tǒng)設(shè)計中實現(xiàn)此類算法會受到技術(shù)和成本的限制。當今的現(xiàn)代化處理器速度快、性價比高,解決了這些難題。
 

  總結(jié)

  zui近幾年,適用于-270°C至+1750°C溫度范圍的高性價比、熱電偶溫度檢測技術(shù)取得較大進展。在改進溫度測量和范圍的同時,成本也更加合理,功耗更低。

  如果ADC和熱電偶直接連接,這些基于熱電偶的溫度測量系統(tǒng)需要低噪聲ADC (如MAX11200)。熱電偶、PRTD和ADC集成至電路時,能夠?qū)崿F(xiàn)非常適用于便攜式檢測應(yīng)用的高性能溫度測量系統(tǒng)。

  MAX11200具有較高的無噪聲分辨率、集成緩沖器和GPIO驅(qū)動器,可直接連接任何傳統(tǒng)的熱電偶及高分辨率PRTD (如PT1000),無需額外的儀表放大器或電流源。更少的接線和更低的熱誤差進一步降低系統(tǒng)復(fù)雜性和成本,使設(shè)計者能夠?qū)崿F(xiàn)DAS與熱電偶及冷端補償模塊的簡單接口。

  四、常見液位計的種類及應(yīng)用

  液位計接觸式測量

  接觸式測量是從鋼帶浮子液位計為開端,以各種方式測量浮子距離而演化到各種現(xiàn)代化儀表如伺服式、磁致伸縮式等等熱電技術(shù),鋼帶浮子式:zui早期的液位計,現(xiàn)今都面臨著更新?lián)Q代。

  浮子受浮力浮在介質(zhì)表面,通過變速齒輪到有刻度的鋼帶上讀出液位值,液位上升或下降破了力平衡后,浮子也跟隨上升下降,帶動鋼帶運行。理論精度在2-3mm左右,電廠鍋爐、汽輪機、電氣、熱控、水處理等熱電行業(yè)技術(shù)免費交流平臺! 安裝復(fù)雜,可靠性較低,由于機械部件多,很容易發(fā)生鋼帶卡死不動的情況。

  磁致伸縮型

  探棒上端電子部件產(chǎn) 生低壓電流脈沖,開始計時,產(chǎn)生磁場沿磁致伸縮線向下傳播,浮子隨著液位變化沿測量竿上下移動,浮子內(nèi)有磁鐵,也產(chǎn)生磁場,兩個磁場相遇,磁致伸縮線扭曲形成扭應(yīng)力波脈沖,脈沖速度已知,計算脈沖傳播時間即對應(yīng)液位變化。

  精度zui高能夠達到1mm,磁致伸縮液位精度較高,可測油水分界面但由于其接觸的測量方式和較高的安裝、維護要求導(dǎo)致市場普及不廣。

  由于其受介質(zhì)密度和溫度影響很大,所以常常精度比較差,而為消除這些影響,需要很多其他測試儀表,結(jié)果搭建一套完善的靜壓測量系統(tǒng)價格很高。

  

  伺服式液位計

  伺服式液位計是zui近比較成功的新型液位計,主要應(yīng)用在輕油品的高精度測量中。與雷達液位計形成比較強的競爭。 基本原理同鋼帶式液位計,但具有力傳感器以及伺服系統(tǒng),形成閉環(huán)調(diào)節(jié)系統(tǒng),通過考慮鋼帶自身重力,地調(diào)節(jié)浮子高度以達到平衡浮力和重力,得到的當前液面到罐頂高度,以得到液位值。熱電技術(shù)聯(lián)盟精度高,能夠達到1mm,滿足計量級要求使用于平靜的輕質(zhì)無腐蝕性液體。

  

  靜壓式液位計

  靜壓式液位計比較特殊,其利用均勻液體的壓強與高度成正比的關(guān)系通過測量液體底部的壓力來折算液位高度。

  P=ρgh (P 壓強)

  

 

版權(quán)所有 © 2024 上海仁沃實業(yè)發(fā)展有限公司 All Rights Reserved    備案號:滬ICP備12013603號-3    sitemap.xml    管理登陸    技術(shù)支持:化工儀器網(wǎng)